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ABSTRACT: The Multi-Year Reanalysis of Remotely Sensed Storms (MYRORSS) dataset blends 
radar data from the WSR-88D network and Near-Storm Environmental (NSE) model analyses us-
ing the Multi-Radar Multi-Sensor (MRMS) framework. The MYRORSS dataset uses the WSR-88D 
archive starting in 1998–2011, processing all valid single-radar volumes to produce a seamless 
three-dimensional reflectivity volume over the entire contiguous United States with an approxi-
mate 5-min update frequency. The three-dimensional grid has an approximate 1 km × 1 km hori-
zontal dimension and is on a stretched vertical grid that extends to 20 km MSL with a maximal 
vertical spacing of 1 km. Several reflectivity-derived, severe-storm-related products are also 
produced, which leverage the ability to merge the MRMS and NSE data. Two Doppler velocity-
derived azimuthal shear layer maximum products are produced at a higher horizontal resolution 
of approximately 0.5 km × 0.5 km. The initial period of record for the dataset is 1998–2011. The 
dataset underwent intensive manual quality control to ensure that all available and valid data 
were included while excluding highly problematic radar volumes that were a negligible percent-
age of the overall dataset, but which caused large data errors in some cases. This dataset has 
applications toward radar-based climatologies, postevent analysis, machine learning applications, 
model verification, and warning improvements. Details of the manual quality control process are 
included and examples of some of these applications are presented.
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T he Multi-Radar Multi-Sensor (MRMS; Lakshmanan et al. 2007a; Smith et al. 2016; Zhang 
et al. 2016) system was made operational in the National Weather Service (NWS) in 2014. 
A key component of the MRMS system is software to merge individual radars together 

into a seamless latitude–longitude–height grid (Lakshmanan et al. 2006). The MRMS data 
can also be combined with other data, such as Near-Storm Environment (NSE) information 
provided by model analysis grids, to derive further products or analyses. While the operational 
MRMS system can provide an archive of data, any data delivery failures or delays, incorrect 
configurations, or computer downtime affect the overall completeness and accuracy of any 
operational archive. Thus, processing data in a reanalysis framework is necessary to provide 
a dataset that has been vetted for completeness and accuracy. The Multi-Year Reanalysis of 
Remotely Sensed Storms (MYRORSS) is that effort and is working to not only complete the 
base data of merged radar reflectivity data, but also derive further datasets that may be more 
approachable by users who may not have access to large computing resources.

Currently MYRORSS has processed data over 13 years spanning from 22 April 1998 
through 31 December 2011 using the Warning Decision Support System–Integrated Infor-
mation (WDSS-II; Lakshmanan et al. 2007a) suite of algorithms that is also used to create 
the operational MRMS products. The MYRORSS dataset benefits from data quality checks 
that included manual intervention for poor single-radar data quality and specific deletion of 
poor data volumes that caused severe errors in the resulting three-dimensional merged grid 
(see the “Additional quality control and known issues” section for specific examples of poor 
data quality). These additional quality control checks allow users to create more accurate 
analyses. The size of the dataset, combined with the data quality, lends this dataset to more 
complex applications such as machine learning. Other potential applications of the dataset 
include postevent analysis, radar climatologies, and hazardous weather event probabilities.

Data
The foundation for MYRORSS is from the Next-Generation Radar (NEXRAD) network composed 
of the WSR-88D systems. The Level II data from the WSR-88Ds, which contain reflectivity, 
mean radial velocity, and spectrum width, were accessed from the National Centers for En-
vironmental Information (NCEI) and Amazon Web Services (AWS; NOAA/NWS/ROC 1991; 
Ansari et al. 2018). The average number of radars available in the NEXRAD Level II archive 
increases as years become more contemporary. In 1998, there were on average 76 radars 
available in the archive across the CONUS while at the end of 2011 there were on average 
134 radars in the archive. During the timespan of the current MYRORSS dataset, the NEXRAD 
network was upgraded to a higher resolution and several new volume coverage patterns (VCPs) 
were implemented. Lower-resolution single-radar (hereafter “legacy”) data have a spatial 
resolution of 1° azimuthal × 1 km range gate to a range of 460 km for reflectivity with velocity 
and spectrum width having a range to 230 km with a 250-m range gate. Higher-resolution 
single-radar (hereafter “superres”) data have 0.5° azimuthal × 250 m range gate resolution 
to a range of 460 km for reflectivity and 300 km for velocity and spectrum width (Torres and 
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Curtis 2007). The WSR-88D network also began an upgrade to polarimetric capabilities start-
ing in 2010 which was completed in 2013; however, the initial MYRORSS dataset uses only 
horizontal reflectivity, spectrum width, and Doppler velocity.

The MRMS reflectivity data were combined with NSE model analyses from the Rapid Update 
Cycle (RUC; Benjamin et al. 2004) to produce a variety of products, such as maximum expected 
size of hail (MESH; Witt et al. 1998), that may be used in the analysis of severe weather events. 
During the MYRORSS analysis period, the RUC model was upgraded to have improved spatial 
resolution. Before 2002, the RUC 40 km was used, while the 20-km analyses were used for 
the remainder of the processed period with occasional 13-km analyses used to gap-fill any 
missing 20-km analyses in the CIWRO/NSSL archive.1

Methods
Data processing. Data processing began with single radar han-
dling and was completed using the WDSS-II suite of algorithms 
(Fig. 1, see single radar processing). The first step was to convert the data files to Network 
Common Data Form (netCDF; Rew et al. 2015) from the binary format specified by the Radar 
Operations Center (NOAA NWS ROC 1991). Once the data were in netCDF format, a quality 
control neural network (Lakshmanan et al. 2007b) was used to remove nonmeteorological 
reflectivity features within the data such as biological targets and ground clutter. To help 
remove the biological clutter, but not snow since they can have similar appearances in the 
reflectivity field, the RUC surface temperature was used within the algorithm to determine 
whether snow was possible or not when quality controlling lower reflectivity values near 
the radar. An additional quality control algorithm was used to remove any additional radar 
“blooms,” caused by biological scatter, around the radar site (Lakshmanan et al. 2010; Tang 
et al. 2011) that could make it past the initial quality control neural network.

Using the wind profile derived from RUC analyses for each radar site, radial velocity data 
were dealiased using methods developed by Jing and Wiener (1993) and expanded upon since 
by the Radar Operations Center (ROC).2 Once dealiasing was 
completed, azimuthal shear was calculated using a linear least 
squares derivative to compute the rotational component of the 
radial velocity field (Mahalik et al. 2019). Azimuthal shear data 
within a 5-km range of the radar were not processed to reduce 
noise from ground clutter. Azimuthal shear was filtered using 
a reflectivity threshold of 40 dBZ and the reflectivity data were 
dilated prior to filtering. The dilation was performed using a  
5 × 5 pixel neighborhood. In order for a new value to be placed in 
the center pixel, the neighborhood had to be at least 33% filled and the second largest value 
in the neighborhood was used as the new reflectivity value. Dilating the reflectivity allows for 
circulations along reflectivity gradients occurring at or near the edges of observed reflectiv-
ity to be properly maintained. Maximal azimuthal shear was calculated within two vertical 
layers: 0–3 km above ground level (AGL) to capture low-level rotation near the surface, and 
3–6 km AGL to capture midlevel rotation within the storm.

Once single-radar processing was completed for all radars for a given day, the data were 
blended together using the radar data merging technique developed by Lakshmanan et al. 
(2006). These mosaics used the closest four radars available within 400 km to the given point 
within the domain. To reduce the time needed for merger calculations, the closest four radars 
were predetermined and hardcoded into a cache. For instance, say a cluster of five radars are 
close to a point, only the nearest four would be considered and the fifth was never used, even if 
one of the nearest four were unavailable. The merged data were blended such that contributions 
from the radars are weighted by the inverse square of the distance to the radar from each pixel.  

1 CIWRO/NSSL maintained an internal archive of 
RUC hourly analyses and used whatever highest 
resolution was available in the archive.

2 The dealiasing used for MYRORSS was from the 
Open Radar Products Generator 18 provided 
by the ROC. The code has been implemented in 
WDSS-II in the dealiasVel program. The dealias-
Vel program is updated with the latest code from 
the ROC, thus the latest versions of WDSS-II will 
not have the version of the dealiasing code used 
in MYRORSS processing.
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The reflectivity field was blended in 3D while the azimuthal shear layers were blended in 
2D using the maximal values in the layer. The horizontal resolutions for the reflectivity data 
and azimuthal shear layers are shown in Table 1. The temporal resolution is approximately 
every 5 min as the merger is triggered when the software receives data that are at least 5 min 
removed from the previously computed volume. The 3D reflectivity volume is a product itself 
but was also the input for several other radar-derived products that are discussed within the 
“Products” section. The 3D reflectivity has a staggered vertical grid with 35 levels (Table 1)

Computational and hardware configuration. The large amount of data were processed 
using a distributed computing system. The processing completed at CIWRO/NSSL leveraged 
up to 17 processing machines, with a single machine serving as the data storage (Fig. 1). 
These processing machines are individual computers equipped with 32–128 GB of RAM, 
and in general a minimum of 50 GB of RAM was needed to complete the three-dimensional 

Fig. 1. Flowchart showing the complexities of processing such a large dataset and how it flows on a distributed comput-
ing system. Each color is representative of a different date to allow multiple dates and radar to be processed at once, 
each solid line is a different radar, and each dashed line is the final merged radar data. The single-radar processing flow is 
shown at the top of the figure and is completed for each radar. Single-radar data are stored as binary radial data, and NSE 
data are preprocessed into netCDF formatted latitude–longitude grids. Final data are in netCDF formatted latitude–longitude 
grids for each level of the merger and the two flattened azimuthal shear products.
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reflectivity mergers, though some intense, widespread severe weather days (e.g., 27 April 
2011 outbreak) required over 90 GB of RAM. Hard disk input/output (I/O) was the most re-
strictive bottleneck for processing and generally limited the processing on each machine to 
about twenty simultaneous processes. For intense, widespread severe weather, I/O would 
slow merger processing to near or slower than real time (i.e., an hour of elapsed time in the 
data were equivalent to a real-time hour of processing); however, increased storm coverage 
did not lead to significant changes in single-radar processing time. Figure 1 shows a simpli-
fied example of the workflow for processing. For each date, all the data were staged on the 
MYRORSS storage server and from there that machine sent out all the single radar process-
ing to other, available processing computers. If machines were too busy, the storage server 
would wait and continue sending data once machines were available, automatically. Once 
the single-radar processing was completed, the data were transferred to the machine selected 
to run the merger processing. The merging process began once all valid radars for the day 
arrived on the machine, automatically. Once the merger processing was finished, the merged 
data were transferred back to the MYRORSS storage server.

The processing was monitored by CIWRO/NSSL staff and student assistants. Several checks 
were written into controlling software for the single-radar and merger processing, which would 
halt processing of that specific single-radar or merger process if a potential processing failure 
was detected. Users could then review the potential error, implement a potential solution (or 
in extreme cases, completely delete corrupted data), and then restart the processing where 
it left off. This reduced both the amount of potential missing 
data in the resulting dataset3 and the amount of time required 
for processing to occur. Each archived year of data took approxi-
mately 1–1.5 months to process for legacy resolution radar data 
and 1.5–2 months to process for superres resolution radar data. 
Each year processed is approximately 5 TB of data, most of it 
being the three-dimensional reflectivity field.

Additional quality control and known issues. While the reflectivity quality control soft-
ware used in MYRORSS processing has been developed over many years and published  
(Lakshmanan et al. 2007b, 2010; Tang et al. 2011), there still arise situations where data 
errors were passed on by the software as valid reflectivity echoes. A common example of 
nonmeteorological reflectivity data still passing through the quality control software was the 
result of superrefraction of coastal radar signals when strong inversions were present, leading 
to radar beam ducting over the water surface (Doviak and Zrnić 2006). This caused scattering 
on coastlines far from the radar due to buildings and other human infrastructure. Since the 
assumption within the quality control software was that the beam would be at altitudes far 
above the surface at those distances from the radars, the software would interpret the high 

Table 1. Horizontal resolution of the reflectivity products and the azimuthal shear products.

MYRORSS horizontal resolution

Horizontal resolution Grid points

Reflectivity products 0.01° latitude × 0.01° longitude, approximately 1-km2 resolution 3,500 × 7,000 grid points

Azimuthal shear products 0.005° latitude × 0.005° longitude, approximately 0.5-km2 resolution 7,000 × 14,000 grid points

MYRORSS reflectivity vertical resolution

Height above MSL Vertical spacing Levels

250 m–3 km 250 m 12

3.5–9 km 500 m 12

10–20 km 1,000 m 11

3 Since WDSS-II software runs in a linear fashion, 
a corrupt file or invalid data could prematurely 
end processing of data. If no checks were imple-
mented, the data would be sent only partially 
complete and the resulting merger would be 
incomplete as well.
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reflectivity values from the ground clutter as valid weather signals. Another common failure 
was due to problems at the radar site and the encoding of the data. Frequently, individual 
elevation scans or even whole volumes, were nearly filled with very high reflectivity values 
(e.g., 90 dBZ), even for clear air. Another similar, but less frequent, issue was that the radar 
reflectivity would be offset by a large deviation (e.g., +50 dBZ), even for valid weather echoes. 
The number of radars per day with any type of error noted by the manual quality control is 
shown in Fig. 2 over the 14-yr dataset. Figures 2b–l show the top 10 radars with errors from 
the entire dataset over the 14-yr period. KBYX, located in Key West, Florida, is the radar with 
the most errors which mostly occur over the cool season. This radar, along with KJAX, KOKX, 

Fig. 2. (a) Number of radars per day with at least one error over the 14-yr dataset. (b)–(l) Top 10 radars (with KBYX being 
the highest) with at least one error or more.
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KGYX, KHGX, and potentially also KVTX, had most of their errors due to the radar beam duct-
ing over the water surface. The other radar errors were mostly due to terrain and electronic 
interference from chaff releases.

Since very high reflectivity values were generally the result of many of the data errors, each 
day of data could (somewhat) easily be manually inspected by a team of research assistants. 
This inspection was completed by viewing the daily accumulations of the MESH (Witt et al. 
1998; Lakshmanan et al. 2007a; Smith et al. 2016) product, since large reflectivity at high 
altitudes would result in large MESH values. For MESH product patterns and values that 
looked to be in error, the source radar causing the probable invalid reflectivity was reviewed 
and if an error was found, the volume containing the error was removed and the date was 
reprocessed. If any false detections occurred while valid detections of weather were present 
(e.g., in another sector of the elevation scan), the corrupted data could not be removed without 
removing correct data and so they were not removed.

Ideally, the single-radar data would be remapped to the larger latitude–longitude domain 
by volume and stored. That would enable the capability to remove that data and rerun the 
merger process without having to reprocess the single-radar data. However, storage capacity 
limitations did not allow for this to occur, so even if only a single elevation scan was found to 
cause an error as described, the entire processing chain for all radars for the entire day would 
need to be rerun. In addition, if any single-radar processing changed, single-radar process-
ing would still need to be completely rerun. Unfortunately, if this occurred, due to algorithm 
updates affecting the data, processing of the entire dataset had to be restarted several times 
since not all potential errors can be captured on testing datasets.

Since there was no additional Doppler velocity quality control beyond dealiasing of the 
data, azimuthal shear is highly susceptible to problems in the base data caused by radar site 
data corruptions and dealiasing errors. Further, no streamlined solution has been found for 
removing poor or invalid velocity data while retaining the uncorrupted reflectivity data. This 
is because radar data volume in the binary Level II format contains both reflectivity and ve-
locity data. For MYRORSS processing in general, if the reflectivity was invalid, the removal 
of velocity data as well would not negatively impact the resulting azimuthal shear product 
(i.e., invalid reflectivity data always means invalid velocity data). However, the opposite was 
not true. Thus, the poor velocity data elevations would have to be individually targeted for 
removal and the workload required was infeasible for such a large dataset.

Corrupted data examples, shown in Fig. 3, exist even after the automated quality control 
algorithms. These examples include rings around the radar seemingly due to the corruption 
at the radar site with data collection (Fig. 3a), traffic on interstate highways and wind farms 
from strong temperature inversions near the radar (Fig. 3b), dealiasing failures appearing 
in the azimuthal shear product (Fig. 3c) and radar beam ducting along coasts (Fig. 3d). 
Even with noisy and incorrect data, users can still do postprocessing to “clean” the data 
a bit more. For example, an additional filter was applied to the MESH data in the MESH 
climatology (discussed in depth later) during postprocessing. This additional filter, a mul-
tiple hypothesis tracking (MHT) algorithm, was added to the accumulator algorithm within 
WDSS-II (Lakshmanan et al. 2013a) and aids in the removal of noise and erroneous data. 
The MHT algorithm required clusters to be of a certain size and remain for certain number 
of timeframes or else the data within those clusters were filtered out of the resulting prod-
uct. If a cluster reached the size thresholds, then it must also meet the temporal threshold. 
This helped remove errors that only appear for one radar scan and immediately disappear 
in the next scan, remove clutter that has no movement, and filter lower, inconsequential 
MESH values from the final products.

The final remaining, potential complication of the MYRORSS database was the varying tem-
poral resolution that was near the 5-min target interval. The merger process has an inherent 
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0–2-s time drift each time a new data interval is processed. Thus, all time steps are at least  
5 min, though rarely exactly 5 min.

It should be noted that only horizontally polarized reflectivity data were used for the three-
dimensional merger and the database does not include the dual polarimetric era products, 
which will involve additional preprocessing of fields. New products, merger settings and reso-
lutions have been tested for future processing of polarimetric data. Additional quality control 
will have to be implemented for polarimetric data, primarily for ZDR calibration concerns.

Products
For the CONUS, 17 different products were created and saved within the MYRORSS dataset: 3D 
base reflectivity (Figs. 4a,b), composite reflectivity (Fig. 4c), reflectivity at the lowest altitude 
(RALA; Fig. 4d), echo tops at 18 dBZ (Fig. 5a), echo tops at 40 dBZ (Fig. 5b), echo tops at 50 dBZ 
(Fig. 5c), height of 18-dBZ echo tops above the 0°C isotherm (Fig. 5d), height of 40-dBZ echo  
tops above the 0°C isotherm (Fig. 5e), height of 50-dBZ echo tops above the 0°C isotherm  
(Fig. 5f), reflectivity at isotherm 0°C (Fig. 6a), reflectivity at isotherm −10°C (Fig. 6b), reflectiv-
ity at isotherm −20°C (Fig. 6c), MESH (Fig. 6d), vertically integrated liquid (VIL; Fig. 6e), severe 
hail index (SHI; Fig. 6f), 0–3 km AGL azimuthal shear (Fig. 7a), and 3–6 km AGL azimuthal 
shear (Fig. 7b). Information about each product is summarized in Table 2. The products saved 
by the reanalysis were determined by usability and popularity, allowing inexperienced users 
to be able to work with data without additional 3D cube algorithm processing.

Fig. 3. Quality control issues: (a) ring shown around KDLH in MESH 24-h accumulation for  
1200 UTC 22 Jun 2002–1200 UTC 23 Jun 2002, (b) interstate highways and windfarms in a monthly 
accumulation for February 2011 of reflectivity at lowest altitude centered over KAMA (from Smith 
et al. 2017), (c) a daily accumulation of positive low-level azimuthal shear in the Mid-Atlantic  
region showing where velocity dealiasing failed for 1200 UTC 27 Aug 2011–1200 UTC 28 Aug 2011,  
and (d) beam ducting appearing in the MESH product along the western coast of Florida for the 
2002 accumulation.

Brought to you by NOAA Central Library | Unauthenticated | Downloaded 04/07/22 12:52 PM UTC



A M E R I C A N  M E T E O R O L O G I C A L  S O C I E T Y M A R C H  2 0 2 2 E846

Fig. 4. (a) Vertical cross section of reflectivity with (b) composite reflectivity at 1.25 km and cross-
section location, (c) reflectivity at lowest altitude, and (d) composite reflectivity at 2355 UTC 27 
Apr 2011.

Fig. 5. Echo tops at (a) 18, (b) 40, and (c) 50 dBZ. Height of (d) 18-, (e) 40-, and (f) 50-dBZ echo top above the 0°C isotherm 
at 2355 UTC 27 Apr 2011.
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Summary of research using MYRORSS
Several projects have been underway as the MYRORSS data were being processed and qual-
ity controlled. The temporal span of the data lends itself toward developing climatologies 
while the large size of the dataset makes it sufficient for machine learning, especially deep 
learning. MYRORSS MESH data have been explored to create new hail climatologies for the 
United States. So far general investigations of the number of days of hail per year, seasonality 
of hail occurrence (Layne et al. 2014; Rosseau et al. 2017), and preferred day of the week and 
time of day have been conducted (Williams et al. 2018). Hourly swaths of multiple products 
combined with near-storm environment data are being explored as the input to machine learn-
ing methods to hopefully develop better hail sizing algorithms and to develop a better hail 

Fig. 6. Selection of reflectivity-based products (bottom row) produced for the MYRORSS dataset. Reflectivity at isotherm 
(a) 0°, (b) −10°, and (c) −20°C. Radar derived products (d) MESH, (e) SHI, and (f) VIL at 2355 UTC 27 Apr 2011.

Fig. 7. The two Doppler-derived velocity products produced for the MYRORSS dataset. (a) Low-level and (b) midlevel  
azimuthal shear at 2354 UTC 27 Apr 2011.

Brought to you by NOAA Central Library | Unauthenticated | Downloaded 04/07/22 12:52 PM UTC



A M E R I C A N  M E T E O R O L O G I C A L  S O C I E T Y M A R C H  2 0 2 2 E848

climatology beyond simple classification thresholds (e.g., severe versus nonsevere; Meadows 
et al. 2021). One outcome from these preliminary investigations into creating the climatol-
ogy is that even with extensive quality control, issues can still be seen in the maximal MESH  
(Fig. 8a), such as a radar ring in northeastern Minnesota and high maximal MESH values in 
central California where radar beams interact with topography. Other quality control issues 
are also apparent using the MESH counts (Fig. 8b) with high counts in central California again 
and along the coasts in Florida due to beam ducting (shown closer in Fig. 3d).

A rotating storms climatology has been examined as well. Using the azimuthal shear 
products from MYRORSS, the occurrence of storm rotation across the CONUS was examined 
first by Williams et al. (2014), but due to an error with the LLSD algorithm, the analysis had 
to be reprocessed. Smith and Ortega (2017) compared the azimuthal shear from the original 
algorithm to the corrected algorithm, while LaRoche et al. (2018) continued with the work 
and investigated different methods on how to filter out noisy data due to gust fronts while 
still maintaining the rotation tracks. MHT was again leveraged to filter the azimuthal shear 
product when creating rotation tracks. The aggressive MHT settings (Fig. 9c) maintained the 
strongest rotation tracks but filtered out the weaker tracks that had the potential to be torna-
does while the conservative MHT settings (Fig. 9b) left too much noise along fronts especially 
when a location was close to a radar site. Additional work is being completed still to determine 
the best settings and other quality control methods.

Table 2. The MYRORSS product names along with the usefulness of each product, the figure of the example, and references to 
the algorithm.

MYRORSS products

Product name (unit) About/uses Image References

3D base reflectivity (dBZ) Gives complete overview of storm
Used to create many of the other products within MYRORSS

Figs. 4a,b Smith et al. (2016)

Composite reflectivity (dBZ) Maximum value of reflectivity in the vertical column above 
each grid point
Used to view full horizontal extent of storms at all altitudes 
that a specific tilt may not encompass

Fig. 4d Tait et al. (2015)

Reflectivity at lowest altitude (dBZ) Reflectivity value closest to Earth’s surface
Useful to indicate intensity of precipitation near the surface

Fig. 4c Smith et al. (2016)

Echo tops at 18, 40, and 50 dBZ (km) Highest altitude of the specified reflectivity value
Useful for identifying rapidly intensifying convection and 
determining storm severity

Figs. 5a–c Lakshmanan et al. 
(2013b), Smith et al. 

(2016)

18-, 40-, and 50-dBZ echo top height 
above 0°C isotherm (km)

Identification of strong updrafts and potential for severe hail Figs. 5d–f Cavanaugh and  
Schultz (2012)

Reflectivity at 0°, −10°, and −20°C (dBZ) Reflectivity at isotherms are based on environmental 
temperature from RUC analyses
Useful for detection of hail growth and identifying which 
storms will likely produce lightning

Figs. 6a–c Smith et al. (2016)

Maximum expected size of hail (MESH; mm) Shows full spatial extent and hail size distribution of a 
thunderstorm

Fig. 6d Witt et al. (1998), 
Lakshmanan et al. (2006)

Severe hail index (SHI; J m−1 s−1) Used as input to MESH Fig. 6e Witt et al. (1998), 
Lakshmanan et al. (2006)

Vertically integrated liquid (VIL; kg m−2) Measure of the liquid water content within a cloud
High values have been frequently associated with severe 
weather

Fig. 6f Greene and Clark (1972), 
Smith et al. (2016)

Low- and midlevel azimuthal shear (s−1) Indicative of rotation within a storm including mesocyclones 
and tornadic vortex signatures depending on level of viewing
Gust fronts near radar can overwhelm signal leading to noisy/
erroneous data
Not calculated within 5 km of radar or when velocity data are 
range folded or missing

Figs. 7a,b Smith and Elmore (2004), 
Mahalik et al. (2019)

Brought to you by NOAA Central Library | Unauthenticated | Downloaded 04/07/22 12:52 PM UTC



A M E R I C A N  M E T E O R O L O G I C A L  S O C I E T Y M A R C H  2 0 2 2 E849

Smith et al. (2017) completed a reflectivity climatology using the reflectivity products in-
cluding merged reflectivity, composite reflectivity, isothermal reflectivities as 0°, −10°, and 
−20°C, as well as RALA. This showed the seasonal and monthly climatologies at the −10°C 
isotherm and showed contamination from wind farms, interstate highways, and other qual-
ity control issues. Kingfield et al. (2017) examined the 50-dBZ echo tops for 2000–11. Their 
work showed the maximum height over the 12-yr period, the number of occurrences per year 
of certain heights and greater, and the seasonal and hourly distributions. The study also 
included the distributions of NSE analyses for the distribution of 50-dBZ echo top heights 
for Nebraska and Florida. The conclusions showed that the central plains had the highest 
continuous coverage of 50-dBZ echo tops with summer being the most active in extent and 
intensity. The deepest cells in this region occurred between 1800 and 0300 UTC. Additionally, 
hourly swaths of the echo tops are being leveraged to develop a general storm climatology for 
the United States (Ferguson et al. 2021).

An important application of the MYRORSS dataset is for use in numerical weather pre-
diction (NWP) model verification and in the use of Data Assimilation for NWP, specifically 
convective allowing models (CAMs). The gridded nature and consistent quality control of 
the dataset allows for a pristine truth dataset that can be used in CAM verification and 
validation. Previously, object-based verification methods used Stage IV QPE products as 

Fig. 8. A simple example of a climatological application of MYRORSS data with (a) maximal MESH 
and (b) counts of any sized MESH for the entire dataset produced thus far (1998–2011).
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the truth against reflectivity and Weather Research and Forecasting (WRF) Model output 
(Ebert and McBride 2000; Baldwin et al. 2005; Davis et al. 2006). The quality of the dataset 
easily allows for object identification and matching between reflectivity datasets instead 
of reflectivity proxies. Using MYRORSS reflectivity products instead of Stage IV QPE data 
to represent convection allows for a more realistic verification between model reflectivity 
and observed reflectivity and impacts associated with reflectivity other than rainfall from 
the WSR-88D network (Skinner et al. 2018; Gallo et al. 2019; Potvin et al. 2019; Johnson 
et al. 2020). Another project being completed involves pairing NWS severe and tornado 
warnings with the MYRORSS data and Storm Data reports to create a machine learning 
model to predict the probability of an NWS warning verifying (Douglas et al. 2021).

MYRORSS is an ideal dataset to be used for machine learning applications due to the mil-
lions of data points available over a 14-yr period. Machine learning work has been utilized 
for prediction of damaging straight-line wind (≥50 kt or 25.7 m s−1) using the data from MY-
RORSS for July 2001 through December 2011, excluding 2009 (Lagerquist et al. 2017), and 
for tornadoes for the next hour using convolutional neural networks (CNN; Lagerquist et al. 
2020). For hail size prediction and classification, machine learning techniques, including 
fully connected neural networks, deep-learning, and gradient boosted decision trees, have 
been used to investigate the MYRORSS data combined with the Severe Hazards Analysis 
and Verification Experiments (SHAVE) hail reports (Williams and Ortega 2019), as well as 
hail reports from Storm Data (Escamilla et al. 2020). Using the reflectivity vertical profiles, 
as well as the derived radar products, such as azimuthal shear, MESH, and VIL, at the loca-
tion of a report as inputs to the networks, hail size was predicted. These initial results have 
shown improvement of hail prediction compared to using solely MESH but have also shown 
that vertical profiles alone cannot predict hail size. While results had lower mean absolute 
errors than MESH (Fig. 10), the spread in predictions still existed. For example, an observed 
hail size of 75 mm had predictions using a gradient boosted decision tree ranging from 10 up 
to 75 mm, which was similar for MESH distributions of the same data. In addition to SHAVE 
reports, similar work has been completed with Storm Data that showed nearly identical results 
(Escamilla et al. 2020).

A derivative of the MYRORSS dataset includes storm objects (Clough et al. 2021). These ob-
jects are created for two different k-means watershed segmentation methods. The “lightning” 
object settings are from Meyer et al. (2017), while the more mesoscale-sized feature settings 
are from the ProbSevere Model (Cintineo et al. 2018). The number of storm objects from the 
ProbSevere segmentation settings for April 2011 was over 200,000. It is estimated that there 
are over 15 million objects in the entire dataset. These objects not only contain the reflectivity 

Fig. 9. An example of the preprocessing of data fields needed prior to any sort of application of the data. Here, (a) raw 
azimuthal shear data were filtered by (b) low and (c) high MHT settings for filtering azimuthal shear.
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information, but also include more than 1,200 attributes from the MYRORSS MRMS and NSE 
fields. These objects are also paired with information about population, land use, and Storm 
Data. The storm object attributes are saved in comma-separated values (CSV) files to create a 
more user-friendly version of the MYRORSS dataset. Current work involving the storm objects 
include creating machine learning models to predict the probability of convective hazard 
given the attribute information.

The nearly 14 years of processed MYRORSS data have been used for many applications and 
has proven to be useful. Currently, the workflow is under development for future processing 
of dual-pol radar data. With the additional polarimetric variables available, different methods 
for merging these products are being investigated, as well as any other additional products 
that could be included moving forward. Because of the large amount of data associated with 
dual-pol radar, additional computing resources will be utilized including the University of 
Oklahoma’s OU Supercomputing Center for Education and Research (OSCER) to increase pro-
cessing abilities. This would allow for multiple years to be processed concurrently in house 
on the distributed system as well as on the supercomputer. The MYRORSS dataset is now 
publicly available at https://doi.org/10.15763/DBS.CIMMS.MYRORSS.

Fig. 10. Relative derivative of predicted values for hail size predictions using machine learning models. (a) MESH—mean 
absolute error (MAE): 14.50 mm, (b) gradient boosted decision trees—MAE: 9.17 mm, (c) simple neural network—MAE: 
9.99 mm, and (d) deep neural network—MAE: 10.03 mm.
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